Preview

Management Sciences

Advanced search

Management аccounting: What is subject to digital transformation?

https://doi.org/10.26794/2304-022X-2022-12-3-24-38

Abstract

The subject of the article are the problems of transformation on the basis of breakthrough digital technologies of activity on information support of management and use of accounting information in managerial decision-making. The authors in the course of the research analyze the current state of management accounting and prove that only a factor information model is able to ensure the implementation of the functions of the actual management of the object, allowing observation based on operational, technical, accounting, statistical and data integration requirements. On the example of the system of productivity indicators (qualitatively defined quantity), it is demonstrated that it is possible to implement such requirements for this factor as the object, accuracy and specificity of the work; and an example of a system of indicators for fixed assets — harmonies the functions performed for the object. The article also substantiates the conclusion that the solution of the problems of digital transformation of speech can be provided by an information system functioning based on the platform using Big Data and cloud technologies — DaaS interacting with active elements of the Internet community. In the course of the study, in generalization of modern concepts of management of economic systems, directions of development of digital technologies and their implementation in the processes of information management, methods of system and comparative analysis were used.

About the Authors

O. E. Mikhnenko
Russian University of Transport (MIIT)
Russian Federation

Oleg E. Mikhnenko — Dr. Sci. (Econ.), Professor of the Department of Digital Economy Information Systems

Moscow



V. N. Salin
Financial University
Russian Federation

Victor N. Salin — Cand. Sci. (Econ.), Professor, Professor of the Department of Business Analytics

Moscow



References

1. Prokhorov A., Konik L. Digital transformation. Analysis, trends, world experience. Moscow: Alliance-Print; 2019. 368 p. (In Russ.).

2. Mikhnenko O. E. Management of economic phenomena in railway transport: Information aspect. Moscow: MIIT; 2001. 200 p. (In Russ.).

3. Wiener N. Cybernetics or control and communication in the animal and the machine. New York: John Wiley & Sons, Inc.; 1948. 194 p. (Russ. ed.: Wiener N. Kibernetika, ili upravlenie i svyaz’ v zhivotnom i mashine. 2nd ed. Moscow: Sovetskoe radio; 1968. 326 p.).

4. Mikhnenko O. E. Digital technologies and efficiency of statistical indicators. In: Proc. 2nd Int. sci.-pract. conf. “Digital transformation in the economy of the transport complex” (Moscow, October 11, 2019). Moscow: RUT (MIIT); 2019:207–216. (In Russ.).

5. Zinchenko A. P. et al. Statistics and accounting. Moscow: Kolos; 2018. 436 p. (In Russ.).

6. Glushkov I. E., Kiseleva T. V. Accounting (tax, financial, management) accounting at a modern enterprise. An effective handbook for an accountant (in 2 vols.). 11 th ed. Moscow: KnoRus; Novosibirsk: EKOR-kniga; 2004. (In Russ.).

7. Kas’yanova G. Yu. Accounting-2016: Bookkeeping and tax. Moscow: Abak; 2016. 960 p. (In Russ.).

8. Black J. Introduction to accounting and finance. Harlow, New York: FT/Prentice-Hall; 2009. 406 p. (Russ. ed.: Black J. Vvedenie v bukhgalterskii upravlencheskii uchet. Moscow: Ves’ mir; Infra-M; 2018. 424 p.).

9. Horngren Ch.T., Foster G. Cost accounting: A managerial emphasis. Englewood Cliffs, NJ: Prentice-Hall; 1991. 964 p. (Russ. ed.: Horngren Ch.T., Foster G. Bukhgalterskii uchet: upravlencheskii aspekt. Moscow: Finansy i statistika; 1995. 415 p.).

10. Mikhnenko O. E. Information models in the management of economic phenomena. Moscow: MIIT; 2009. 48 p. (In Russ.).

11. Mikhnenko O. E., Salin V. N. From the analysis of statistical data to the analysis of real phenomena based on statistical information. In: Proc. Int. sci.-pract. conf. “Data science” (St. Petersburg, February 5–7, 2020). St. Petersburg: St. Petersburg State University of Economics; 2020:196–199. (In Russ.).

12. Drury C. Cost and management accounting: An introduction. Andover: South-Western Cengage Learning; 2011. 476 p. (Russ. ed.: Drury C. Upravlencheskii i proizvodstvennyi uchet. Vvodnyi kurs. Moscow: Unity; 2019. 320 p.).

13. Atrill P., McLaney E. Accounting and finance for non-specialists. Englewood Cliffs, NJ: Pearson; 2012. 592 p. (Russ. ed.: Atrill P., McLaney E. Finansovyi menedzhment i upravlencheskii uchet dlya rukovoditelei i biznesmenov. Moscow: Alpina Publisher; 2018. 648 p.).

14. Mikhnenko O. E. On measures of labor productivity. In: “Statistical studies of the socio-economic development of Russia and prospects for sustainable growth: Materials and reports”. Moscow: Plekhanov Russian University of Economics; 2019:108–114.

15. Mikhnenko O. E., Salin V. N. Problems of modern transformation of statistics. Uchet. Analiz. Audit = Accounting. Analysis. Auditing. 2021;8(4):18–33. (In Russ.). DOI: 10.26794/2408–9303–2021–8–4–18–33

16. Mayer-Schönberger V., Cukier K. Big Data: A revolution that will transform how we live, work, and think. Boston, MA: Eamon Dolan Books/Mariner Books; 2014. 272 p. (Russ. ed.: Mayer-Schönberger V., Cukier K. Bol’shie dannye. Revolyutsiya, kotoraya izmenit to, kak my zhivem, rabotaem i myslim. Moscow: Mann, Ivanov and Ferber; 2014. 240 p.).

17. Maryika J., Chui M., Brown B. et al. Big data: The next frontier for innovation, competition and productivity. McKinsey Digital. May 01, 2011. URL: https://www.mckinsey.com/business-functions/mckinsey-digital/ourinsights/big-data-the-next-frontier-for-innovation (accessed on 17.12.2021).

18. Franks B. The analytics revolution: How to improve your business by making analytics operational in the Big Data era. Hoboken, NJ: John Wiley & Sons, Inc.; 2014. 304 p. (Russ. ed.: Franks B. Revolyutsiya v analitike. Kak v epokhu Big Data uluchshit’ vash biznes s pomoshch’yu operatsionnoi analitiki. Moscow: Intellektual’naya literature; 2016. 367 p.).

19. Franks B. Taming the Big Data tidal wave: Finding opportunities in huge data streams with advanced analytics. Hoboken, NJ: John Wiley & Sons, Inc.; 2012. 336 p. (Russ. ed.: Franks B. Ukroshchenie bol’shikh dannykh. Kak izvlekat’ znaniya iz massivov informatsii s pomoshch’yu glubokoi analitiki. Moscow: Mann, Ivanov and Ferber; 2014. 343 p.).

20. Hassani H., Saporta G., Silva E.S. Data mining and official statistics: The past, the present and the future. Big Data. 2014;2(1):34–43. DOI: 10.1089/big.2013.0038

21. Hostie T., Nibshirani R., Friedman J. The elements of statistical learning: Data mining, inference, and prediction. 2nd ed. New York: Springer-Verlag; 2009. 763 p.


Review

For citations:


Mikhnenko O.E., Salin V.N. Management аccounting: What is subject to digital transformation? Management Sciences. 2022;12(3):24-38. https://doi.org/10.26794/2304-022X-2022-12-3-24-38

Views: 507


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-022X (Print)
ISSN 2618-9941 (Online)