SYNTHESIS OF ECONOMETRIC AND NEURAL NETWORK MODELS FOR INDICATORS PREDICTION IN RESEARCH AND INNOVATION IN THE RUSSIAN FEDERATION
https://doi.org/10.26794/2304-022X-2016--2-27-37
Abstract
About the Authors
I. KolmakovRussian Federation
Doctor of Economics, Professor at the Department “Information science”
M. Domozhakov
Russian Federation
post-graduate at the Chair “Information science”
References
1. Grishin V.I., Abdikeev N.M. Kolmakov I.B., et al. Sistema rascheta prognoznyh pokazatelej makrojekonomiki Rossii [The calculation system of Russia’s macroeconomic predictive indicators] // Finansovaja analitika. Problemy i reshenija. Nauchno-prakticheskij i informacionno-analiticheskij sbornik [Financial analyst. Problems and solutions. Theoretical and practical and informationanalytical collection], Moscow, Finansy i kredit — Finance and credit, 2010, no. 13 (37), pp. 2–15 (in Russian).
2. Kolmakov I.B., Koltsov A.V., Domozhakov M.V. Osnovy postroenija sistemy kompleksnogo prognoza sfery issledovanij i innovacij vo vzaimosvjazi s makrojekonometricheskimi modeljami jekonomiki Rossii [The foundations of the system of complex forecasting areas of research and innovation interrelated with macroeconometric models of Russian economy]. Innovatika i jekspertiza — Innovation and expertise, 2015, no. 1 (14), pp. 255–275.
3. Abdikeyev N. M. Kognitivnaya biznes-analitika: uchebnik [Cognitive business analytics: textbook]. Moscow, INFRA-M — INFRA-M, 2014, 511 p.
4. Kitova O.V., Kolmakov I.B., Sharafutdinova A.R. Analiz tochnosti i kachestva kratkosrochnogo prognoza pokazatelej social’no-jekonomicheskogo razvitija Rossii [Accuracy and quality analysis of shortterm forecast of social and economic development of Russia]. Vestnik Rossijskogo jekonomicheskogo universiteta im. G.V. Plehanova — Bulletin of Russian Plekhanov University of Economics, 2013, no. 9, pp. 111–119 (in Russian).
5. Kolmakov I.B., Domozhakov M.V. Metodologija prognozirovanija pokazatelej sfery nauchnyh issledovanij i innovacij s pomoshh’ju nejrosetevyh modelej [The methodology of the indicators prediction in research and innovation with the help of neural network models. Menedzhment i biznes-administrirovanie — Management and business administration, 2015, no. 3, pp. 121–127 (in Russian).
6. Amosov O.S., Pashchenko F.F., Muller N.V. Strukturno parametricheskaja identifi kacija vremennogo rjada s primeneniem fraktal’nogo i vejvlet-analiza [Structural parametric identifi cation of time series with the use of fractal and wavelet analysis]. Informatika i sistemy upravlenija — Information science and control systems, 2015, no. 2 (44), pp. 80–88 (in Russian).
7. Rossijskij statisticheskij ezhegodnik. Statisticheskij sbornik. [Russian statistical yearbook. The statistical compilation.] Moscow, Rosstat — Rosstat, 2014, 693 p. (in Russian).
8. Ivanjuk V.A., Pashhenko F.F. Methods and models for the forecasting and management of time series / Proceedings of International work-conference on Time Series (ITISE 2015, Granada, Spain), Granada, 2015, pp. 283–292.
9. Khaikin S. Nejronnye seti. Polnyj kurs. [Haykin S. Neural networks: A Comprehensive Foundation], 2nd edition, translated from English. Moscow, Williams — Vil’jams, 2006, 1104 p. (in Russian).
10. Fors’e Dzh. Bisseks P., Chan U. Razrabotka veb-prilozhenij na Python [Forcier J., Bissex P., Chun W. Python Web Development with Django], translated from English. St. Petersburg, Simvol-Plus — SymbolPlus, 2010, 456 p. (in Russian).
Review
For citations:
Kolmakov I., Domozhakov M. SYNTHESIS OF ECONOMETRIC AND NEURAL NETWORK MODELS FOR INDICATORS PREDICTION IN RESEARCH AND INNOVATION IN THE RUSSIAN FEDERATION. Management Sciences. 2016;6(2):27-37. (In Russ.) https://doi.org/10.26794/2304-022X-2016--2-27-37